Construction of Tchebyshev-ii Weighted Orthogonal Polynomials on Triangular

نویسنده

  • Mohammad A. AlQudah
چکیده

We construct Tchebyshev-II (second kind) weighted orthogonal polynomials U (γ) n,r (u, v, w), γ > −1, on the triangular domain T. We show that U (γ) n,r (u, v, w), n = 0, 1, 2, . . . , r = 0, 1, . . . , n, form an orthogonal system over T with respect to the Tchebyshev-II weight function. AMS Subject Classification: 42C05, 33C45, 33C70

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi-weighted Orthogonal Polynomials on Triangular Domains

We construct Jacobi-weighted orthogonal polynomials (α,β,γ) n,r (u,v,w), α,β,γ > −1, α+ β + γ = 0, on the triangular domain T . We show that these polynomials (α,β,γ) n,r (u, v,w) over the triangular domain T satisfy the following properties: (α,β,γ) n,r (u,v,w) ∈ n, n≥ 1, r = 0,1, . . . ,n, and (α,β,γ) n,r (u,v,w) ⊥ (α,β,γ) n,s (u,v,w) for r =s. Hence, (α,β,γ) n,r (u,v,w), n= 0,1,2, . . ., r =...

متن کامل

Generalized Tschebyscheff - Ii Weighted Polynomials on Simplicial Domain Mohammad

In this paper, we construct generalized Tschebyscheff-type weighted orthogonal polynomials U n,r (u,v,w), γ > −1, in the Bernstein-Bézer form over the simplicial domain. We show that U n,r (u,v,w), r = 0,1, . . . ,n; n= 0,1,2, . . . , form an orthogonal system over a triangular domain with respect to the generalized weight function.

متن کامل

Constrained Ultraspherical-Weighted Orthogonal Polynomials on Triangle

We construct Ultraspherical-weighted orthogonal polynomials C (λ,γ) n,r (u, v, w), λ > − 2 , γ > −1, on the triangular domain T, where 2λ + γ = 1. We show C (λ,γ) n,r (u, v, w), r = 0, 1, . . . , n; n ≥ 0 form an orthogonal system over the triangular domain T with respect to the Ultraspherical weight function. Mathematics Subject Classification: 33C45, 42C05, 33C70

متن کامل

Recurrence Relations for Orthogonal Polynomials on Triangular Domains

Abstract: In Farouki et al, 2003, Legendre-weighted orthogonal polynomials Pn,r(u, v, w), r = 0, 1, . . . , n, n ≥ 0 on the triangular domain T = {(u, v, w) : u, v, w ≥ 0, u+ v+w = 1} are constructed, where u, v, w are the barycentric coordinates. Unfortunately, evaluating the explicit formulas requires many operations and is not very practical from an algorithmic point of view. Hence, there is...

متن کامل

Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains

A scheme for constructing orthogonal systems of bivariate polynomials in the Bernstein–Bézier form over triangular domains is formulated. The orthogonal basis functions have a hierarchical ordering by degree, facilitating computation of least-squares approximations of increasing degree (with permanence of coefficients) until the approximation error is subdued below a prescribed tolerance. The o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015